SPIRAL WAVE MAINTAINED BY NOISE
Abstract
The effect of Gaussian white noise on a chemical wavefront is studied in a modified FitzHugn–Nagumo model by applying numerical simulations. A rotating spiral waves can be formed if the medium is excitable enough and the fronts has a free end, when the reaction diffusion system is disturbed by a certain non-zero level noise. It is counterintuitive that noise plays a constructive role in the product and propagation of single spiral waves in this letter. Weak or strong noise will make against the product and propagation of spiral waves. In a certain noise level, spiral wave can be maintained in a medium, where such spiral waves cannot be observed in the absence of the noise.