World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DETRENDED FLUCTUATION ANALYSIS OF AUTOREGRESSIVE PROCESSES

    https://doi.org/10.1142/S0219477507003908Cited by:16 (Source: Crossref)

    Autoregressive processes (AR) have typical short-range memory. Detrended Fluctuation Analysis (DFA) was basically designed to reveal long-range correlations in non stationary processes. However DFA can also be regarded as a suitable method to investigate both long-range and short-range correlations in non stationary and stationary systems. Applying DFA to AR processes can help understanding the non-uniform correlation structure of such processes. We systematically investigated a first order autoregressive model AR(1) by DFA and established the relationship between the interaction constant of AR(1) and the DFA correlation exponent. The higher the interaction constant the higher is the short-range correlation exponent. They are exponentially related. The investigation was extended to AR(2) processes. The presence of an interaction between distant terms with characteristic time constant in the series, in addition to a near by interaction will increase the correlation exponent and the range of correlation while the effect of a distant negative interaction will significantly decrease the range of interaction, only. This analysis demonstrate the possibility to identify an AR(1) model in an unknown DFA plot or to distinguish between AR(1) and AR(2) models.