World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EXACT SOLUTION FOR THE INTERIOR OF A BLACK HOLE

    https://doi.org/10.1142/S0219477508004441Cited by:0 (Source: Crossref)

    Within the Relativistic Theory of Gravitation it is shown that the equation of state p = ρ holds near the center of a black hole. For the stiff equation of state p = ρ − ρc the interior metric is solved exactly. It is matched with the Schwarzschild metric, which is deformed in a narrow range beyond the horizon. The solution is regular everywhere, with a specific shape at the origin. The gravitational redshift at the horizon remains finite but is large, z ~ 1023 M/M. Time keeps its standard role also in the interior. The energy of the Schwarzschild metric, shown to be minus infinity in the General Theory of Relativity, is regularized in this setup, resulting in E = Mc2.