World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Workshop on Noisy Many-Body SystemsNo Access

THE ROLE OF UNBOUNDED TIME-SCALES IN GENERATING LONG-RANGE MEMORY IN ADDITIVE MARKOVIAN PROCESSES

    https://doi.org/10.1142/S0219477513400026Cited by:4 (Source: Crossref)

    Any additive stationary and continuous Markovian process described by a Fokker–Planck equation can also be described in terms of a Schrödinger equation with an appropriate quantum potential. By using such analogy, it has been proved that a power-law correlated stationary Markovian process can stem from a quantum potential that (i) shows an x-2 decay for large x values and (ii) whose eigenvalue spectrum admits a null eigenvalue and a continuum part of positive eigenvalues attached to it. In this paper we show that such two features are both necessary. Specifically, we show that a potential with tails decaying like x with μ < 2 gives rise to a stationary Markovian process which is not power-law autocorrelated, despite the fact that the process has an unbounded set of time scales. Moreover, we present an exactly solvable example where the potential decays as x-2 but there is a gap between the continuum spectrum of eigenvalues and the null eigenvalue. We show that the process is not power law autocorrelated, but by decreasing the gap one can arbitrarily well approximate it. A crucial role in obtaining a power-law autocorrelated process is played by the weights giving the contribution of each time-scale contribute to the autocorrelation function. In fact, we will see that such weights must behave like a power-law for small energy values λ. This is only possible if the potential VS(x) shows a x-2 decay to zero for large x values.