World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The Hurst Exponent of Heart Rate Variability in Neonatal Stress, Based on a Mean-Reverting Fractional Lévy Stable Motion

    https://doi.org/10.1142/S0219477520500261Cited by:6 (Source: Crossref)

    We aim at detecting stress in newborns by observing heart rate variability (HRV). The HRV features nonlinearities. Fractal dynamics is a usual way to model them and the Hurst exponent summarizes the fractal information. In our framework, we have observations of short duration, for which usual estimators of the Hurst exponent, like detrended fluctuation analysis (DFA), are not adapted. Moreover, we observe that the Hurst exponent does not vary much between stress and rest phases, but its decomposition in memory and underlying properties of the probability distribution leads to satisfactory diagnostic tools. This decomposition of the Hurst exponent is in addition embedded in a mean-reverting model. The resulting model is a mean-reverting fractional Lévy stable motion (FLSM). We estimate it and use its parameters as diagnostic tools of neonatal stress. Indeed, the value of the speed of reversion parameter is a significant indicator of stress. The evolution of both parameters in which the Hurst exponent is decomposed provides us with significant indicators as well. On the contrary, the Hurst exponent itself does not bear useful information.

    Communicated by Cecilia Pennetta