A Hybrid Model of Primary Ensemble Empirical Mode Decomposition and Quantum Neural Network in Financial Time Series Prediction
Abstract
Financial time series are nonlinear, volatile and chaotic. Inspired by quantum computing, this paper proposed a new model, called primary ensemble empirical mode decomposition combined with quantum neural network (PEEMD-QNN) in predicting the stock index. PEEMD-QNN takes the advantages of the PEEMD which retains the main component of modal component and QNN. To demonstrate that our PEEMD-QNN model is robust, we used the new model to predict six major stock index time series in China at a specific time. Detailed experiments are implemented for both of the proposed prediction models, in which empirical mode decomposition combined with QNN (EMD-QNN), QNN and BP neural network are compared. The results demonstrate that the proposed PEEMD-QNN model has higher accuracy than BP neural network, QNN model and EMD-QNN model in stock market prediction.
Communicated by Wei-Xing Zhou