World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

STOCHASTIC VERSIONS OF ANOSOV'S AND NEISTADT'S THEOREMS ON AVERAGING

    https://doi.org/10.1142/S0219493701000023Cited by:26 (Source: Crossref)

    In systems which combine slow and fast motions the averaging principle says that a good approximation of the slow motion can be obtained by averaging its parameters in fast variables. This setup arises, for instance, in perturbations of Hamiltonian systems where motions on constant energy manifolds are fast and across them are slow. When these perturbations are deterministic Anosov's theorem says that the averaging principle works except for a small in measure set of initial conditions while Neistadt's theorem gives error estimates in the case of perturbations of integrable Hamiltonian systems. These results are extended here to the case of fast and slow motions given by stochastic differential equations.

    AMSC: Primary 34C29, Secondary 37C10, Secondary 60J60, Secondary 37J99