World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

L2 Diffusion Approximation for Slow Motion in Averaging

    https://doi.org/10.1142/S0219493703000693Cited by:27 (Source: Crossref)

    Assuming that the fast motion in averaging is sufficiently well mixing we show that the slow motion can be approximated in the L2-sense by a diffusion solving Hasselmann's nonlinear stochastic differential equation and which provides a much better approximation than the one suggested by the averaging principle. Previously, only weak limit theorems in averaging were known which cannot justify, in principle, a nonlinear diffusion approximation of the slow motion.

    AMSC: Primary 34C29, Secondary 60F15, Secondary 60J60, Secondary 70K65