INFINITELY MANY BROWNIAN GLOBULES WITH BROWNIAN RADII
Abstract
We consider an infinite system of non-overlapping globules undergoing Brownian motions in ℝ3. The term globules means that the objects we are dealing with are spherical, but with a radius which is random and time-dependent. The dynamics is modelized by an infinite-dimensional stochastic differential equation with local time. Existence and uniqueness of a strong solution is proven for such an equation with fixed deterministic initial condition. We also find a class of reversible measures.