World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A UNIFYING APPROACH TO FRACTIONAL LÉVY PROCESSES

    https://doi.org/10.1142/S0219493712500177Cited by:17 (Source: Crossref)

    Starting from the moving average representation of fractional Brownian motion, there are two different approaches to constructing fractional Lévy processes in the literature. Applying L2-integration theory, one can keep the same moving average kernel and replace the driving Brownian motion by a pure jump Lévy process with finite second moments. Alternatively, in the framework of alpha-stable random measures, the Brownian motion is replaced by an alpha-stable Lévy process and the exponent in the kernel is reparametrized by H - 1/α. We now provide a unified approach taking kernels of the form , where γ can be chosen according to the existing moments and the Blumenthal–Getoor index of the underlying Lévy process. These processes may exhibit both long and short range dependence. In addition we will examine further properties of the processes, e.g., regularity of the sample paths and the semimartingale property.

    AMSC: 60G22, 60E07