World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Existence of densities for stochastic evolution equations driven by fractional Brownian motion

    https://doi.org/10.1142/S021949372150009XCited by:1 (Source: Crossref)

    In this work, we prove a version of Hörmander’s theorem for a stochastic evolution equation driven by a trace-class fractional Brownian motion with Hurst exponent 12<H<112<H<1 and an analytic semigroup on a given separable Hilbert space. In contrast to the classical finite-dimensional case, the Jacobian operator in typical solutions of parabolic stochastic PDEs is not invertible which causes a severe difficulty in expressing the Malliavin matrix in terms of an adapted process. Under a Hörmander’s bracket condition and some algebraic constraints on the vector fields combined with the range of the semigroup, we prove that the law of finite-dimensional projections of such solutions has a density with respect to Lebesgue measure. The argument is based on rough path techniques and a suitable analysis on the Gaussian space of the fractional Brownian motion.

    AMSC: 60H07, 60H15