World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Invariant measures for random expanding on average Saussol maps

    https://doi.org/10.1142/S0219493722500150Cited by:1 (Source: Crossref)
    This article is part of the issue:

    In this paper, we investigate the existence of random absolutely continuous invariant measures (ACIP) for random expanding on average Saussol maps in higher dimensions. This is done by the establishment of a random Lasota–Yorke inequality for the transfer operators on the space of bounded oscillation. We prove that the number of ergodic skew product ACIPs is finite and will provide an upper bound for the number of these ergodic ACIPs. This work can be seen as a generalization of the work in [F. Batayneh and C. González-Tokman, On the number of invariant measures for random expanding maps in higher dimensions, Discrete Contin. Dyn. Syst. 41 (2021) 5887–5914] on admissible random Jabłoński maps to a more general class of higher-dimensional random maps.

    AMSC: 37H15, 37C30