World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FINITE QUASI-FROBENIUS MODULES AND LINEAR CODES

    https://doi.org/10.1142/S0219498804000873Cited by:41 (Source: Crossref)

    The theory of linear codes over finite fields has been extended by A. Nechaev to codes over quasi-Frobenius modules over commutative rings, and by J. Wood to codes over (not necessarily commutative) finite Frobenius rings. In the present paper, we subsume these results by studying linear codes over quasi-Frobenius and Frobenius modules over any finite ring. Using the character module of the ring as alphabet, we show that fundamental results like MacWilliams' theorems on weight enumerators and code isometry can be obtained in this general setting.