World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PERIODIC SHORT EXACT SEQUENCES AND PERIODIC PURE-EXACT SEQUENCES

    https://doi.org/10.1142/S021949881000421XCited by:4 (Source: Crossref)

    Benson and Goodearl [Periodic flat modules, and flat modules for finite groups, Pacific J. Math.196(1) (2000) 45–67] proved that if M is a flat module over a ring R such that there exists an exact sequence of R-modules 0 → M → P → M → 0 with P a projective module, then M is projective. The main purpose of this paper is to generalize this theorem to any exact sequence of the form 0 → M → G → M → 0, where G is an arbitrary module over R. Moreover, we seek counterpart entities in the Gorenstein homological algebra of pure projective and pure injective modules.

    AMSC: 13D02, 13D05, 13D07, 16E05, 16E10