World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

From a Mechanical Lagrangian to the Schrödinger Equation: A Modified Version of the Quantum Newton Law

    https://doi.org/10.1142/S0217751X03015076Cited by:16 (Source: Crossref)

    In the one-dimensional stationary case, we construct a mechanical Lagrangian describing the quantum motion of a nonrelativistic spinless system. This Lagrangian is written as a difference between a function T, which represents the quantum generalization of the kinetic energy and which depends on the coordinate x and the temporal derivatives of x up the third order, and the classical potential V(x). The Hamiltonian is then constructed and the corresponding canonical equations are deduced. The function T is first assumed to be arbitrary. The development of T in a power series together with the dimensional analysis allow us to fix univocally the series coefficients by requiring that the well-known quantum stationary Hamilton–Jacobi equation be reproduced. As a consequence of this approach, we formulate the law of the quantum motion representing a new version of the quantum Newton law. We also analytically establish the famous Bohm relation outside the framework of the hydrodynamical approach and show that the well-known quantum potential, although it is a part of the kinetic term, plays really the role of an additional potential as assumed by Bohm.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!