On the semigroup of all partial fence-preserving injections on a finite set
Abstract
For n∈ℕ, let Xn={a1,a2,…,an} be an n-element set and let F=(Xn;<f) be a fence, also called a zigzag poset. As usual, we denote by In the symmetric inverse semigroup on Xn. We say that a transformation α∈In is fence-preserving if x<fy implies that xα<fyα, for all x,y in the domain of α. In this paper, we study the semigroup PFIn of all partial fence-preserving injections of Xn and its subsemigroup IFn={α∈PFIn:α−1∈PFIn}. Clearly, IFn is an inverse semigroup and contains all regular elements of PFIn. We characterize the Green’s relations for the semigroup IFn. Further, we prove that the semigroup IFn is generated by its elements with rank ≥n−2. Moreover, for n∈2ℕ, we find the least generating set and calculate the rank of IFn.
Communicated by L. Bokut