World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

On the semigroup of all partial fence-preserving injections on a finite set

    https://doi.org/10.1142/S0219498817502231Cited by:11 (Source: Crossref)

    For n, let Xn={a1,a2,,an} be an n-element set and let F=(Xn;<f) be a fence, also called a zigzag poset. As usual, we denote by In the symmetric inverse semigroup on Xn. We say that a transformation αIn is fence-preserving if x<fy implies that xα<fyα, for all x,y in the domain of α. In this paper, we study the semigroup PFIn of all partial fence-preserving injections of Xn and its subsemigroup IFn={αPFIn:α1PFIn}. Clearly, IFn is an inverse semigroup and contains all regular elements of PFIn. We characterize the Green’s relations for the semigroup IFn. Further, we prove that the semigroup IFn is generated by its elements with rank n2. Moreover, for n2, we find the least generating set and calculate the rank of IFn.

    Communicated by L. Bokut

    AMSC: 20M20, 20M18