World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

STIEFEL-MANIFOLD LEARNING BY IMPROVED RIGID-BODY THEORY APPLIED TO ICA

    https://doi.org/10.1142/S0129065703001625Cited by:3 (Source: Crossref)

    In previous contributions we presented a new class of algorithms for orthonormal learning of a linear neural network with p inputs and m outputs, based on the equations describing the dynamics of a massive rigid frame in a submanifold of ℛp. While exhibiting interesting features, such as intrinsic numerical stability, strongly binding to the orthonormal submanifolds, and good controllability of the learning dynamics, tested on principal/independent component analysis, the proposed algorithms were not completely satisfactory from a computational-complexity point of view. The main drawback was the need to repeatedly evaluate a matrix exponential map. With the aim to lessen the computational efforts pertaining to these algorithms, we propose here an improvement based on the closed-form Rodriguez formula for the exponential map. Such formula is available in the p=3 and m=3 case, which is discussed with details here. In particular, experimental results on independent component analysis (ICA), carried out with both synthetic and real-world data, help confirming the computational gain due to the proposed improvement.