Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Duplication methods for embeddings of real division algebras

    https://doi.org/10.1142/S0219498822500633Cited by:3 (Source: Crossref)

    We introduce two groups of duplication processes that extend the well known Cayley–Dickson process. The first one allows to embed every 4-dimensional (4D) real unital algebra 𝒜 into an 8D real unital algebra denoted by FD(𝒜). We also find the conditions on 𝒜 under which FD(𝒜) is a division algebra. This covers the most classes of known 4D real division algebras. The second process allows us to embed particular classes of 4D RDAs into 8D RDAs. Besides, both duplication processes give an infinite family of non-isomorphic 8D real division algebras whose derivation algebras contain su(2).

    Communicated by L. A. Bokut

    AMSC: 17A35, 17A36