World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

BIOMECHANICAL ANALYSIS OF WALL REMODELING IN ELASTIC ARTERIES WITH APPLICATION OF FLUID–SOLID INTERACTION METHODS

    https://doi.org/10.1142/S0219519407002418Cited by:8 (Source: Crossref)

    The effects of age-related hypertrophic remodeling of the thoracic aortic wall on mechanical stresses are quantified using the fluid–solid interaction method. Boundary conditions include physiological flow and pressure waves. Fluid and solid governing equations are solved using the loose coupling method. The results show alteration of hemodynamic and wall mechanical parameters by the remodeling process, including reduction in maximum circumferential stress and lower shear stress fluctuation with smaller portion of negative value and smaller maximum value. Such characteristics are indicators of the reduction of risk of endothelial injury. Remodeling causes elevation of the stress phase angle, an indicator of interaction between shear and circumferential stresses that causes triggering of endothelial cell proliferation, which is necessary for coverage of extra surface required by remodeling. The improvement by remodeling is limited by age-related structural changes such as elastin dysfunction and disorganization of structural components.