World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Efficient Design of Quantum Circuits Using Nearest Neighbor Constraint in 3D Architecture

    https://doi.org/10.1142/S0218126619500841Cited by:4 (Source: Crossref)

    Synthesis and optimization of quantum circuits have received significant attention from researchers in recent years. Developments in the physical realization of qubits in quantum computing have led to new physical constraints to be addressed. One of the most important constraints that is considered by many researchers is the nearest neighbor constraint which limits the interaction distance between qubits for quantum gate operations. Various works have been reported in the literature that deal with nearest neighbor compliance in multi-dimensional (mostly 1D and 2D) qubit arrangements. This is normally achieved by inserting SWAP gates in the gate netlist to bring the interacting qubits closer together. The main objective function to minimize here is the number of SWAP gates. The present paper proposes an efficient qubit placement strategy in a three-dimensional (3D) grid that considers not only qubit interactions but also the relative positions of the gates in the circuit. Experimental evaluation on a number of benchmark circuits show that the proposed method reduces the number of SWAP gates by 16.2% to 47.0% on the average as compared to recently published works.

    This paper was recommended by Regional Editor Emre Salman.