World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EFFECTS OF AGING ON THE LATENCY PERIOD IN MANDIBULAR DISTRACTION OSTEOGENESIS: A COMPUTATIONAL MECHANOBIOLOGICAL ANALYSIS

    https://doi.org/10.1142/S0219519408002644Cited by:10 (Source: Crossref)

    Mandibular symphyseal distraction osteogenesis is a clinical procedure utilized in orthodontics for solving problems of dental overcrowding on the mandibular arch. A critical issue is to evaluate the optimal duration of the latency period between the osteotomy and the first aperture of distraction device. In fact, the latency period should change with the patient's age. To this end, a computational mechanobiological model has been developed in order to find optimal durations of latency period for young, adult, and elder patients. The model is implemented in a finite element framework simulating the process of tissue differentiation in the bone callus formed after osteotomy. The biophysical stimulus regulating the tissue differentiation process is hypothesized to be a function of the octahedral shear strain and interstitial fluid flow velocity. The resulting spatial distribution of stiffness properties in the callus region is analyzed in order to assess the risk of premature bone union of osteotomy edges. The three-dimensional (3D) finite element model (FEM) of human mandible is reconstructed from computed tomography (CT) scans and also includes a tooth-borne device. Under unilateral occlusion, the mandible is submitted to full mastication loading or to mastication forces reduced by 70%. The results show that optimal durations of the latency period for preventing premature bone union are about 5–6 days for the young patient, 7–8 days for the adult patient, and 9–10 days for the elder patient. These durations seem rather insensitive to the magnitude of mastication forces. Finally, distraction force values predicted by the present mechanobiological model are in good agreement with data reported in the literature.