World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MEDICAL IMAGING AND PROCESSING METHODS FOR CARDIAC FLOW RECONSTRUCTION

    https://doi.org/10.1142/S0219519409002894Cited by:37 (Source: Crossref)

    Intra-cardiac blood flow imaging and visualization is challenging due to the processes involved in generating velocity fields of flow within specific chambers of interest. Visual analysis of cardiac flow or wall deformation is crucial for an accurate examination of the heart.

    Cardiac chamber boundary encapsulation is one of the key implementations for region definition. To provide intelligible results describing flow within the human heart, cardiac chamber segmentation is a pre-requisite so that fluid motion information can be presented within a region of interest defined by the chamber boundary. A technique that is used to establish contouring along the cardiac wall is described mathematically. This article also sets the practical foundation for flow vector synthesis and visualization in the cardiac discipline. We have outlined conceptual development and the construction of flow field based on a three-dimensional Cartesian grid that can give a greater insight into the blood dynamics within the heart.

    We developed a framework that is able to present both anatomical as well as flow information by overlaying velocity fields over medical images and displaying them in cine-mode. By addressing most of the methods involved from the programming perspective, procedural execution and memory efficiency have been considered. Our implemented system can be used to examine abnormal blood motion behaviour or discover flow phenomena in normal or defective hearts.