World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

METHOD TO ANALYZE THE FATIGUE CRACKS IN ACRYLIC BONE CEMENT

    https://doi.org/10.1142/S0219519411004551Cited by:0 (Source: Crossref)

    Acrylic bone cement is a poly(methyl methacrylate)-based material that ensures short-term stability of orthopedic implants after surgery. Its long-term performance can be affected by many factors (e.g., composition, cement mixing and delivery method, temperature, humidity). Furthermore, patient activities produce a spectrum of cyclic loads that generate microdamage within the acrylic bone cement mantle. Therefore, pre-clinical studies on fatigue damage of acrylic bone cements are essential for predicting the long-term stability of cemented implants. There are several methods for analyzing damage of acrylic bone cement. However, they present a number of limitations. The aim of this study was to validate the use of a high-resolution scanner to analyze the presence of microcracks in acrylic bone cement. The proposed method met predetermined criteria to overcome limitations of previous methods, ensuring approximate spatial resolution of 5 microns, reduction of image acquisition time, and reduction of artifacts due to operator and/or environment during image acquisition. Additionally, the described method was applied to three types of acrylic bone cement specimens that previously were subjected to a fatigue test. The presented method enables the accurate assessment of fatigue damage induced during cycling loading, including quantification of the number, length, type and position of cement cracks.