World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

AUTOMATED DIAGNOSIS OF CARDIAC HEALTH USING RECURRENCE QUANTIFICATION ANALYSIS

    https://doi.org/10.1142/S0219519412400143Cited by:3 (Source: Crossref)

    The sum total of millions of cardiac cell depolarization potentials can be represented using an electrocardiogram (ECG). By inspecting the P-QRS-T wave in the ECG of a patient, the cardiac health can be diagnosed. Since the amplitude and duration of the ECG signal are too small, subtle changes in the ECG signal are very difficult to be deciphered. In this work, the heart rate variability (HRV) signal has been used as the base signal to observe the functioning of the heart. The HRV signal is non-linear and non-stationary. Recurrence quantification analysis (RQA) has been used to extract the important features from the heart rate signals. These features were fed to the fuzzy, Gaussian mixture model (GMM), and probabilistic neural network (PNN) classifiers for automated classification of cardiac bio-electrical contractile disorders. Receiver operating characteristics (ROC) was used to test the performance of the classifiers. In our work, the Fuzzy classifier performed better than the other classifiers and demonstrated an average classification accuracy, sensitivity, specificity, and positive predictive value of more than 83%. The developed system is suitable to evaluate large datasets.