World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CARDIAC ARRHYTHMIA DIAGNOSIS BY HRV SIGNAL PROCESSING USING PRINCIPAL COMPONENT ANALYSIS

    https://doi.org/10.1142/S0219519412400325Cited by:6 (Source: Crossref)

    An electrocardiogram (ECG) signal represents the sum total of millions of cardiac cells' depolarization potentials. It helps to identify the cardiac health of the subject by inspecting its P-QRS-T wave. The heart rate variability (HRV) data, extracted from the ECG signal, reflects the balance between sympathetic and parasympathetic components of the autonomic nervous system. Hence, HRV signal contains information on the imbalance between these two nervous system components that results in cardiac arrhythmias. Thus in this paper, we have analyzed HRV signal abnormalities to determine and classify arrhythmias. The HRV signals are non-stationary and non-linear in nature. In this work, we have used continuous wavelet transform (CWT) coupled with principal component analysis (PCA) to extract the important features from the heart rate signals. These features are fed to the probabilistic neural network (PNN) classifier, for automated classification. Our proposed system demonstrates an average accuracy of 80% and sensitivity and specificity of 82% and 85.6%, respectively, for arrhythmia detection and classification. Our system can be operated on larger data sets. Our CWT–PCA analysis resulted in eigenvalues which constituted the HRV signal analysis parameters. We have shown and plotted the distribution of the parameters' mean values and the standard deviation for arrhythmia classification. We found some overlap in the distribution of these eigenvalue parameters for the different arrhythmia classes, which mitigates the effective use of these parameters to separate out the various arrhythmia classes. Therefore, we have formulated a HRV Integrated Index (HRVID) of these eigenvalues, and determined and plotted the mean values and standard deviation of HRVID for the various arrhythmia classifications. From this information, it can be seen that the HRVID is able to distinguish among the various arrhythmia classes. Hence, we have made a case for the employment of this HRVID as an index to effectively diagnose arrhythmia disorders.