CARDIAC ARRHYTHMIA DIAGNOSIS BY HRV SIGNAL PROCESSING USING PRINCIPAL COMPONENT ANALYSIS
Abstract
An electrocardiogram (ECG) signal represents the sum total of millions of cardiac cells' depolarization potentials. It helps to identify the cardiac health of the subject by inspecting its P-QRS-T wave. The heart rate variability (HRV) data, extracted from the ECG signal, reflects the balance between sympathetic and parasympathetic components of the autonomic nervous system. Hence, HRV signal contains information on the imbalance between these two nervous system components that results in cardiac arrhythmias. Thus in this paper, we have analyzed HRV signal abnormalities to determine and classify arrhythmias. The HRV signals are non-stationary and non-linear in nature. In this work, we have used continuous wavelet transform (CWT) coupled with principal component analysis (PCA) to extract the important features from the heart rate signals. These features are fed to the probabilistic neural network (PNN) classifier, for automated classification. Our proposed system demonstrates an average accuracy of 80% and sensitivity and specificity of 82% and 85.6%, respectively, for arrhythmia detection and classification. Our system can be operated on larger data sets. Our CWT–PCA analysis resulted in eigenvalues which constituted the HRV signal analysis parameters. We have shown and plotted the distribution of the parameters' mean values and the standard deviation for arrhythmia classification. We found some overlap in the distribution of these eigenvalue parameters for the different arrhythmia classes, which mitigates the effective use of these parameters to separate out the various arrhythmia classes. Therefore, we have formulated a HRV Integrated Index (HRVID) of these eigenvalues, and determined and plotted the mean values and standard deviation of HRVID for the various arrhythmia classifications. From this information, it can be seen that the HRVID is able to distinguish among the various arrhythmia classes. Hence, we have made a case for the employment of this HRVID as an index to effectively diagnose arrhythmia disorders.