World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HUMAN ACTIVITY RECOGNITION BY FUSING MULTIPLE SENSOR NODES IN THE WEARABLE SENSOR SYSTEMS

    https://doi.org/10.1142/S0219519412500844Cited by:14 (Source: Crossref)

    This paper presents a novel method for recognizing human daily activity by fusion multiple sensor nodes in the wearable sensor systems. The procedure of this method is as follows: firstly, features are extracted from each sensor node and subsequently reduced in dimension by generalized discriminant analysis (GDA), to ensure the real-time performance of activity recognition; then, the reduced features are classified with the multiclass relevance vector machines (RVM); finally, the individual classification results are fused at the decision level, in consideration that the different sensor nodes can provide heterogeneous and complementary information about human activity. Extensive experiments have been carried out on Wearable Action Recognition Database (WARD). Experimental results show that if all the five sensor nodes are fused with the adaptive weighted logarithmic opinion pools (WLOGP) fusion rule, we can even achieve a recognition rate as high as 98.78%, which is far more better than the situations where only single sensor node is available or the activity data is processed by state-of-the-art methods. Moreover, this proposed method is flexible to extension, and can provide a guideline for the construction of the minimum desirable system.