World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE EFFECT OF THRESHOLD VALUE ON THE ARCHITECTURAL PARAMETERS AND STIFFNESS OF HUMAN CANCELLOUS BONE IN MICRO CT ANALYSIS

    https://doi.org/10.1142/S0219519412500923Cited by:10 (Source: Crossref)

    In this study, the effects of threshold variation in image segmentation of micro CT images of cancellous bone in the determination of the architectural parameters and stiffness were investigated. A total of 42 samples of 6 × 6 × 6 mm3 cubes with threshold values set between 500–1100 greyscale in increment of 100 of CT images of six human C5 vertebral bodies were analyzed. Threshold value of 800, based on Otsu's method, was set for the control group. From various threshold values, the respective architectural parameters, and the corresponding stiffness in three orthotropic directions (Exx, Eyy, Ezz) of each cube were computed from the voxel-based micro-finite element models under compressive simulation. The results showed that 1% variation of threshold value resulted in a 3.4% variation in BV/TV, 2% in Tb.N, 3.1% in Tb.Th, 2.9% in BS/BV, 1.8% in Tb.Sp, 29.2% in Exx, 28.7% Eyy and 27.7% in Ezz. Statistical analysis showed that 2.9% threshold variation caused significant change in BV/TV, Tb.Th, Exx, Eyy and Ezz values. The study shows that with threshold variation of more than 2.9%, significant differences in the architectural parameters and stiffness compared to those based on Otsu's method.