World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FOOT LOADING PATTERNS WITH DIFFERENT UNSTABLE SOLES STRUCTURE

    https://doi.org/10.1142/S0219519415500141Cited by:11 (Source: Crossref)

    Foot loading patterns can be changed by using different unstable sole structures, detailed quantification of which is of great significance for research and technological development in falling prevention and lower limb disorders rehabilitation. In this study, unstable soles constructions are adjusted through unstable elements in heel and medial, neutral and lateral forefoot and the foot loading patterns are comparatively studied. A total of 22 healthy male subjects participated in this test. Subjects are asked to walk over a 12 m walkway with control shoes and experimental shoes in self-adapted speed. Significant peak pressure, contact area and pressure-time integral differences in middle foot are found between control shoes and experimental shoes. In addition, peak pressure and pressure-time integral are found to increase significantly with unstable elements adding to center forefoot. The results showed that adjusting the unstable elements in coronal plane of forefoot could effectively alter the distribution of plantar pressure, this could potentially offer a mechanism for preventing falling of elderly and rehabilitation of lower extremity malfunctions. This study also demonstrates a novel concept that unstable element could be effectively adjusted in terms of position to meet different functional requirement.