World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ALIGNMENT OF CELLULAR FOCAL CONTACTS AND THEIR SHAPES BY SUBSTRATE ANISOTROPY

    https://doi.org/10.1142/S0219519415500670Cited by:2 (Source: Crossref)

    Cell adhesion to the extracellular matrix is accomplished by the clustering of receptor–ligand bonds into focal contacts on the cell-substrate interface. The contractile forces applied onto these focal contacts lead to elastic deformation of the surrounding, which results into a cellular mechanosensory capability that plays a key role in cell adhesion, spreading, and migration, among many others. The mechanosensitivity can be manipulated by the substrate anisotropy, by which focal contacts may align into certain directions so to minimize the total mechanical potential energy. Using the elastic anisotropic contact analysis, this work systematically analyzes the dependence of the alignment on the elastic anisotropy, and more importantly, the direction of the inclined contractile forces. The contact displacement fields are a complex function of the elastic constants, so simple analysis based on tensile or shear softest direction cannot properly predict the alignment orientation. It is also proved that if these focal contacts are of elongated shape, the major axis will be parallel to the alignment direction.