World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

WAVE PROPAGATION IN A 1D FLUID DYNAMICS MODEL USING PRESSURE-AREA MEASUREMENTS FROM OVINE ARTERIES

    https://doi.org/10.1142/S021951941650007XCited by:7 (Source: Crossref)

    This study considers a 1D fluid dynamics arterial network model with 14 vessels developed to assimilate ex vivo 0D temporal data for pressure-area dynamics in individual vessel segments from 11 male Merino sheep. A 0D model was used to estimate vessel wall parameters in a two-parameter elastic model and a four-parameter Kelvin viscoelastic model. This was done using nonlinear optimization minimizing the least squares error between model predictions and measured cross-sectional areas. Subsequently, estimated values for elastic stiffness and unstressed area were related to construct a nonlinear relationship. This relation was used in the network model. A 1D single vessel model of the aorta was then developed and used to estimate the inflow profile and parameters for total resistance and compliance for the downstream network and to demonstrate effects of incorporating viscoelasticity in the arterial wall. Lastly, the extent to which vessel wall parameters estimated from ex vivo data can be used to realistically simulate pressure and area in a vessel network was evaluated. Elastic wall parameters in the network simulations were found to yield pressure-area relationships across all vessel locations and sheep that were in ranges comparable to those in the ex vivo data.

    AMSC: 76D05, 76Z05, 35Q30, 92C35, 92B05, 92C10