EFFECTS OF SUBSTRATE DEFORMABILITY ON CELL BEHAVIORS: ELASTIC MODULUS VERSUS THICKNESS
Abstract
The deformability of the substrate stimulating cell mechanotransduction depends not only on elastic modulus but also on the thickness. Polydimethylsiloxane (PDMS) which is widely used in microfluidic chips and platforms can be fabricated in a wide range of elastic modulus and thickness. In this study, we cultured human umbilical vein endothelial cells (HUVECs) on four groups of PDMS substrates of varying thickness and elastic modulus to examine effects of these parameters on morphology, viability and proliferation of cells. Both elastic modulus and thickness affected cell behavior. In general, the thickness of substrates had relatively higher impact on endothelial morphology than elastic modulus. Elongation of HUVECs on thick substrates was more intense compared to those on thin substrates. Both lowering thickness and reducing elastic modulus of PDMS decreased the viability of HUVECs, although thickness was more influential. Decrease in substrate thickness reduced cell proliferation regardless of substrate elastic modulus. In conclusion, our results suggest that endothelial behavior depends on substrate deformability, but cells react differently to the elastic modulus and thickness of PDMS by morphology, viability and growth. Results can improve the comprehension of cell mechanotransduction.