World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

STUDY ON VIBRATION CHARACTERISTICS AND TRANSMISSION PERFORMANCE OF ROUND WINDOW MEMBRANE UNDER INVERSE EXCITATION

    https://doi.org/10.1142/S0219519418500331Cited by:3 (Source: Crossref)

    According to the vibration characteristics of the round window membrane, a mechanical model that contains round window membrane and the soft tissue is established. The Euler equation of the whole of round window membrane and the soft tissue and the complementary boundary conditions are derived by the variational principle. Combined with the Bessel function, the analytical solution of the total displacement of round window membrane and the soft tissue is obtained by using Mathematica. The results are in good agreement with experimental data, which confirms the validity of the analytical solution of the model. At the same time, the effect of different thicknesses and different elastic modulus of soft tissue on the total displacement of round window membrane and soft tissue is studied by analytical method. The results show that with the thickening of the soft tissue, the total displacement of round window membrane and the soft tissue decreased gradually. However, with the decrease of elastic modulus of the soft tissue, the total displacement of round window membrane and the soft tissue increased gradually. Furthermore, the relationship between thickness and elastic modulus of the soft tissue and the corresponding range selection is achieved, which can evaluate the transmission performance of round window membrane efficiently and provide theoretical basis for the reverse excitation of artificial prosthesis.