EVALUATION OF LEFT VENTRICULAR FILLING PRESSURE USING NUMERICAL MODELING
Abstract
The main objective of this work is to study the effect of blood pressure and viscosity on flow in a pathological and healthy anatomy. The method chosen for this project is the numerical simulation of fluid dynamics. First, a radiological database from Tlemcen hospital was studied in order to select a patient whose aortic anatomy is representative of the pathology studied in this research project. The left ventricle was segmented using SolidWork software. The exported data made it possible to model this geometry on Comsol software. The geometry has been idealized to make it comparable to a given healthy left ventricle geometry and present the main parameters which influence the ventricular hemodynamics. A first series of numerical simulations made it possible to highlight the hemodynamic disturbances associated with the pathology of interest and described extensively in the literature. A second series of numerical simulations made it possible to model the effect of blood viscosity on flow. All the results obtained, the modeling of the left ventricle, must be valid experimentally. This study therefore does not completely justify the treatment of ventricular dilation with a flow modulator but constitutes an important first step towards a proof of concept.