World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE EVOLVING WRINKLE PATTERN OF THE BACILLUS SUBTILIS BIOFILM PROVIDING MORE LIVING SPACE FOR CELLS

    https://doi.org/10.1142/S0219519420500487Cited by:8 (Source: Crossref)

    The biofilm wrinkle evolution is the growth mechanism by which bacteria regulate their physiological state in response to the environmental change. We use the parameter of surface complexity to describe different wrinkle patterns. The surface complexity is defined that the biofilm surface area contact with the air is divided by the projected area of the biofilm. We find that the biofilm surface complexity variation is positively proportional to the number of spores. Although each wrinkle pattern has various wrinkle thickness and width, surface complexities of some patterns are almost same, which guarantees cells have enough living space. Through the observation of the growth of the damaged biofilm, we further find that the biofilm expansion along the circumferential direction is faster than that along radial direction, which means that the internal stress along the circumferential direction contributes the wrinkle formation. Our work provides a new perspective to study biofilm morphologies, and relates the morphology evolution with phenotypes in the Bacillus subtilis biofilm.