THE EVOLVING WRINKLE PATTERN OF THE BACILLUS SUBTILIS BIOFILM PROVIDING MORE LIVING SPACE FOR CELLS
Abstract
The biofilm wrinkle evolution is the growth mechanism by which bacteria regulate their physiological state in response to the environmental change. We use the parameter of surface complexity to describe different wrinkle patterns. The surface complexity is defined that the biofilm surface area contact with the air is divided by the projected area of the biofilm. We find that the biofilm surface complexity variation is positively proportional to the number of spores. Although each wrinkle pattern has various wrinkle thickness and width, surface complexities of some patterns are almost same, which guarantees cells have enough living space. Through the observation of the growth of the damaged biofilm, we further find that the biofilm expansion along the circumferential direction is faster than that along radial direction, which means that the internal stress along the circumferential direction contributes the wrinkle formation. Our work provides a new perspective to study biofilm morphologies, and relates the morphology evolution with phenotypes in the Bacillus subtilis biofilm.