World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A FUSION FRAMEWORK BASED ON CEPSTRAL DOMAIN FEATURES FROM PHONOCARDIOGRAM TO PREDICT HEART HEALTH STATUS

    https://doi.org/10.1142/S0219519421500342Cited by:1 (Source: Crossref)

    A great increase in the number of cardiovascular cases has been a cause of serious concern for the medical experts all over the world today. In order to achieve valuable risk stratification for patients, early prediction of heart health can benefit specialists to make effective decisions. Heart sound signals help to know about the condition of heart of a patient. Motivated by the success of cepstral features in speech signal classification, authors have used here three different cepstral features, viz. Mel-frequency cepstral coefficients (MFCCs), gammatone frequency cepstral coefficients (GFCCs), and Mel-spectrogram for classifying phonocardiogram into normal and abnormal. Existing research has explored only MFCCs and Mel-feature set extensively for classifying the phonocardiogram. However, in this work, the authors have used a fusion of GFCCs with MFCCs and Mel-spectrogram, and achieved a better accuracy score of 0.96 with sensitivity and specificity scores as 0.91 and 0.98, respectively. The proposed model has been validated on the publicly available benchmark dataset PhysioNet 2016.