System Upgrade on Tue, May 28th, 2024 at 2am (EDT)
Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours. For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
No Access
NETWORKS, HETEROGENEITY AND EVOLUTION IN ECONOMICS: A SHORT REVIEW
1. Aiyagari, S. R. , Uninsured idiosyncratic risk and aggregate saving, Q. J. Econ.109(3) (1994) 659–684. Crossref, Web of Science, Google Scholar
2. Algan, Y., Allais, O., Den Haan, W. J. and Rendahl, P. , Solving and simulating models with heterogeneous agents and aggregate uncertainty, in Handbook of Computational Economics, Vol. 3 (2014), pp. 277–324. Crossref, Google Scholar
3. Almquist, Z. W. and Butts, C. T. , Logistic network regression for scalable analysis of networks with joint edge/vertex dynamics, Sociol. Methodol.44(1) (2014) 273–321. Crossref, Web of Science, Google Scholar
4. Amemiya, T. , Regression analysis when the dependent variable is truncated normal, Econometrica41(6) (1973) 997–1016. Crossref, Web of Science, Google Scholar
5. Arrow, K. J. and Hanh, F. , General Competitive Analysis (North-Holland, Amsterdam, 1983). Google Scholar
6. Assenza, T. and Delli Gatti, D. , The financial transmission of shocks in a simple hybrid macroeconomic agent based model, J. Evol. Econ.29 (2019) 265–297. Crossref, Web of Science, Google Scholar
7. Colander, D., Holt, R. P. F. and Barkley Rosser, J. Jr. , The Changing Face of Economics: Conversations with Cutting Edge Economists (University of Michigan Press, 2004). Crossref, Google Scholar
9. Brock, W. A. and Durlauf, S. N. , Interactions-based models, in Handbook of Econometrics, Heckman, J. and Leamer, E. (eds.) (North Holland, Amsterdam, 2001), pp. 3299–3380. Crossref, Google Scholar
10. Carroll, C., The epidemiology of macroeconomic expectations, NBER Working Papers No. 8695, National Bureau of Economic Research (2001). Google Scholar
11. Catalano, M. and Di Guilmi, C. , Uncertainty, rationality and complexity in a multi-sectoral dynamic model: The dynamic stochastic generalized aggregation approach, J. Econ. Behav. Organ.157 (2019) 117–144. Crossref, Web of Science, Google Scholar
12. Cimini, G., Squartini, T., Musmeci, N., Puliga, M., Gabrielli, A., Garlaschelli, D., Battiston, S. and Caldarelli, G. , Reconstructing topological properties of complex networks using the fitness model, in Social Informatics. SocInfo 2014, Lecture Notes in Computer Science, Vol. 8852, Aiello, L. and McFarland, D. (eds.) (Springer, 2015), pp. 323–333. Crossref, Google Scholar
13. Creal, D., Koopman, S. J. and Lucas, A. , Generalized autoregressive score models with applications, J. Appl. Econ.28(5) (2013) 777–795. Crossref, Web of Science, Google Scholar
15. Delli Gatti, D., Gallegati, M., Greenwald, B., Russo, A. and Stiglitz, J. E. , The financial accelerator in an evolving credit network, J. Econ. Dyn. Control34(9) (2010) 1627–1650. Crossref, Web of Science, Google Scholar
16. Di Gangi, D., Bormetti, G. and Lillo, F., Score-driven exponential random graphs: A new class of time-varying parameter models for dynamical networks, (2021). Available at SSRN. Google Scholar
17. Dilaver, Ö., Calvert Jump, R. and Levine, P. , Agent-based macroeconomics and dynamic stochastic general equilibrium models: Where do we go from here?J. Econ. Surv.32 (2018) 1134–1159. Crossref, Web of Science, Google Scholar
18. Dosi, G. and Roventini, A. , More is different … and complex! the case for agent-based macroeconomics, J. Evol. Econ.29 (2019) 1–37. Crossref, Web of Science, Google Scholar
19. Evans, G. W. and Honkapohja, S. , Learning and Expectations in Macroeconomics (Princeton University Press, 2001). Crossref, Google Scholar
20. Garlaschelli, D. and Loffredo, M. I. , Generalized Bose-Fermi statistics and structural correlations in weighted networks, Phys. Rev. Lett.102(3) (2009) 038701. Crossref, Web of Science, Google Scholar
21. Gobbi, A. and Grazzini, J. , A basic New Keynesian DSGE model with dispersed information: An agent-based approach, J. Econ. Behav. Organ.157 (2019) 101–116. Crossref, Web of Science, Google Scholar
22. Greene, W. H., Accounting for excess zeros and sample selection in poisson and negative binomial regression models, Working papers 94-10, Department of Economics, New York University, Leonard N. Stern School of Business (1994). Google Scholar
23. Harvey, A. C. , Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series, Vol. 52 (Cambridge University Press, 2013). Crossref, Google Scholar
24. Hanneke, S., Fu, W. and Xing, E. P. , Discrete temporal models of social networks, Electron. J. Stat.4 (2010) 585–605. Crossref, Web of Science, Google Scholar
26. Hommes, C. H. , Heterogeneous agent models in economics and finance, in Handbook of Computational Economics, Vol. II, Tesfatsion, L. and Judd, K. L. (eds.) (Amsterdam, North-Holland, 2006), pp. 1109–1186. Google Scholar
27. Hommes, C. , Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems (Cambridge University Press, Cambridge, 2013). Crossref, Google Scholar
28. Jackson, M. , Social and Economic Networks (Princeton University Press, 2008). Crossref, Google Scholar
29. Kaplan, G., Moll, B. and Violante, G. L. , Monetary policy according to HANK, Am. Econ. Rev.108(3) (2018) 696–743. Crossref, Web of Science, Google Scholar
30. Kolar, M., Song, L., Ahmed, A. and Xing, E. P. , Estimating time-varying networks, Ann. Appl. Stat.4(1) (2010) 94–123. Crossref, Web of Science, Google Scholar
31. Krusell, P. and Smith, A. A. Jr. , Income and wealth heterogeneity in the macroeconomy, J. Political Econ.106(5) (1998) 867–896. Crossref, Web of Science, Google Scholar
32. Kirman, A. P. , Whom or what does the representative individual represent?J. Econ. Perspect.6(2) (1992) 117–136. Crossref, Web of Science, Google Scholar
33. Diane, L. , Zero-inflated poisson regression, with an application to defects in manufacturing, Technometrics34(1) (1992) 1–14. Crossref, Web of Science, Google Scholar
34. Lee, J., Li, G. and Wilson, J. D. , Varying-coefficient models for dynamic networks, Comput. Stat. Data Anal.152 (2020) 107052. Crossref, Web of Science, Google Scholar
35. Massaro, D. , Heterogeneous expectations in monetary DSGE models, J. Econ. Dyn. Control37 (2013) 680–692. Crossref, Web of Science, Google Scholar
36. Mastromatteo, I., Zarinelli, E. and Marsili, M. , Reconstruction of financial networks for robust estimation of systemic risk, J. Stat. Mech.: Theory Exp.2012 (2012). Crossref, Web of Science, Google Scholar
37. Newman, M., Barabsi, A.-L. and Watts, D. J. , The Structure and Dynamics of Networks, Princeton Studies in Complexity (Princeton University Press, 2006), p. P03011. Google Scholar
38. Pissarides, C. A. , Equilibrium Unemployment Theory (MIT Press, Cambridge, MA, 2000). Google Scholar
39. Romer, P., The trouble with macroeconomics, mimeo (2016). Available at https://paulromer.net/trouble-with-macroeconomics-update/WP-Trouble.pdf. Google Scholar
40. Roth, A. E. and Oliveira Sotomayor, M. A. , Two-sides Matching. A Study in Game Theoretic Modeling and Analysis (Cambridge University Press, 1990). Crossref, Google Scholar
42. Salle, I., Yildizoğlu, M. and Sénégas, M. A. , Inflation targeting in a learning economy: An ABM perspective, Econ. Model.34 (2013) 114–128. Crossref, Web of Science, Google Scholar
43. Santos Silva, J. M. C. and Tenreyro, S. , The log of gravity, Rev. Econ. Stat.88(4) (2006) 641–658. Crossref, Web of Science, Google Scholar
44. Sewell, D. K. and Chen, Y. , Latent space models for dynamic networks, J. Am. Stat. Assoc.110(512) (2015) 1646–1657. Crossref, Web of Science, Google Scholar
45. Snijders, T. A. , The statistical evaluation of social network dynamics, Sociol. Methodol.31(1) (2001) 361–395. Crossref, Web of Science, Google Scholar
46. Wasserman, S. and Faust, K. , Social Network Analysis: Methods and Applications (Cambridge University Press, 1994). Crossref, Google Scholar
47. Woodford, M. , Macroeconomic analysis without the rational expectations hypothesis, Annu. Rev. Econ.5 (2013) 303–346. Crossref, Web of Science, Google Scholar
48. Riccetti, L., Russo, A. and Gallegati, M. , Firm–bank credit network, business cycle and macroprudential policy, J. Econ. Interact. Coord.17 (2022) 475–499. Crossref, Web of Science, Google Scholar