World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Topical Section: Structure and Dynamics of Signed Networks — Guest Editors: Renaud Lambiotte (University of Oxford) and Vincent Traag (Leiden University)No Access

COMMUNITY DETECTION IN BIPARTITE SIGNED NETWORKS IS HIGHLY DEPENDENT ON PARAMETER CHOICE

    https://doi.org/10.1142/S0219525925400028Cited by:0 (Source: Crossref)

    Decision-making processes often involve voting. Human interactions with exogenous entities such as legislations or products can be effectively modeled as two-mode (bipartite) signed networks — where people can either vote positively, negatively, or abstain from voting on the entities. Detecting communities in such networks could help us understand underlying properties: for example ideological camps or consumer preferences. While community detection is an established practice separately for bipartite and signed networks, it remains largely unexplored in the case of bipartite signed networks. In this paper, we systematically evaluate the efficacy of community detection methods on projected bipartite signed networks using a synthetic benchmark and real-world datasets. Our findings reveal that when no communities are present in the data, these methods often recover spurious user communities. When communities are present, the algorithms exhibit promising performance, although their performance is highly susceptible to parameter choice. This indicates that researchers using community detection methods in the context of bipartite signed networks should not take the communities found at face value: it is essential to assess the robustness of parameter choices or perform domain-specific external validation.