Change of variable formulas for regularizing slowly decaying and oscillatory Cauchy and Hilbert transforms
Abstract
Formulas are derived for expressing Cauchy and Hilbert transforms of a function f in terms of Cauchy and Hilbert transforms of f(xr). When r is an integer, this corresponds to evaluating the Cauchy transform of f(xr) at all choices of z1/r. Related formulas for rational r result in a reduction to a generalized Cauchy transform living on a Riemann surface, which in turn is reducible to the standard Cauchy transform. These formulas are used to regularize the behavior of functions that are slowly decaying or oscillatory, in order to facilitate numerical computation and extend asymptotic results.
Dedicated to Frank W. J. Olver, in remembrance of his many fundamental contributions to mathematics and science.