World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Semi-supervised learning with summary statistics

    https://doi.org/10.1142/S0219530519400037Cited by:1 (Source: Crossref)
    This article is part of the issue:

    Nowadays, the extensive collection and analyzing of data is stimulating widespread privacy concerns, and therefore is increasing tensions between the potential sources of data and researchers. A privacy-friendly learning framework can help to ease the tensions, and to free up more data for research. We propose a new algorithm, LESS (Learning with Empirical feature-based Summary statistics from Semi-supervised data), which uses only summary statistics instead of raw data for regression learning. The selection of empirical features serves as a trade-off between prediction precision and the protection of privacy. We show that LESS achieves the minimax optimal rate of convergence in terms of the size of the labeled sample. LESS extends naturally to the applications where data are separately held by different sources. Compared with the existing literature on distributed learning, LESS removes the restriction of minimum sample size on single data sources.

    AMSC: 68T05, 68Q32, 41A25