Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Optimal prediction for kernel-based semi-functional linear regression

    https://doi.org/10.1142/S0219530523500318Cited by:1 (Source: Crossref)
    This article is part of the issue:

    This paper proposes a novel prediction approach for a semi-functional linear model comprising a functional and a nonparametric component. The study establishes the minimax optimal rates of convergence for this model, revealing that the functional component can be learned with the same minimax rate as if the nonparametric component were known and vice versa. This result can be achieved by using a double-penalized least squares method to estimate both the functional and nonparametric components within the framework of reproducing kernel Hilbert spaces. Thanks to the representer theorem, the approach also offers other desirable features, including the algorithm efficiency requiring no iterations. We also provide numerical studies to demonstrate the effectiveness of the method and validate the theoretical analysis.

    AMSC: 68Q32, 68T05, 41A25