ENTANGLED STATE REPRESENTATIONS FOR DESCRIBING 2-DIMENSIONAL ELECTRON SYSTEM IN UNIFORM MAGNETIC FIELD
Abstract
We review how to rely on the quantum entanglement idea of Einstein–Podolsky–Rosen and the developed Dirac's symbolic method to set up two kinds of entangled state representations for describing the motion and states of an electron in uniform magnetic field. The entangled states can be employed for conveniently expressing Landau wave function and Laughlin wave function with a fresh look. We analyze the entanglement involved in electron's coordinates (or momenta) eigenstates, and in the angular momentum-orbit radius entangled state. Various applications of these two representations, such as in developing angular momentum theory, squeezing mechanism, Wigner function and tomography theory for this system are presented. Thus the present review systematically summarizes a distinct approach for tackling this physical system.
You currently do not have access to the full text article. |
---|