World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Selected papers from International Conference on Energy and Environment-Related Nanotechnology (ICEEN); Edited by Junhui HeNo Access

INFLUENCING FACTORS OF LIMESTONE SORPTION AND ITS USAGE IN ADVANCED WASTEWATER TREATMENT FOR PHOSPHORUS REMOVAL

    https://doi.org/10.1142/S0219581X12400285Cited by:2 (Source: Crossref)

    Phosphorus (P) is one of the main triggering nutrients responsible for eutrophication which troubles many waters in China. This study was to investigate the influencing factors of limestone (LS) adsorption and establish the parameter of constructed wetland (CW) using LS as the main substrate when treating effluent from a municipal wastewater treatment plant (MWTP) for P removal. First, a series of batch experiments were conducted to study the influencing factors of LS adsorption. Consequently, the P removal efficiency increased with the temperature and was high during the initial 3 h; the efficiency was over 75% even at initial P content 50 mg/L; under 2 mm small LS particle size enhanced the adsorption but the difference was not significant; the efficiency was over 90% when initial pH was below 6.37 and decreased sharply at pH above 8.15; sodium chloride as background electrolyte decreased the adsorption; organic acids including tartaric acid, oxalic acid and citric acid all suppressed the adsorption, and citric acid demonstrated the strongest effect. Then column experiment was conducted to evaluate the effect of the continuous vertical-flow LS bed treating effluent from a MWTP with varying hydraulic retention time (HRT). Over 80 days, the effluent pH was between 7 and 9, and effective running time increased with HRT during which the effluent total P content was below 0.5 mg/L. Short HRT such as 1 h or 1.5 h was recommended for dynamic LS adsorption. It showed that LS was suitable for the substrate in CW for P removal in wastewater advanced treatment.