World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Investigating the Biodegradability and Physical Properties of Starch Derived Bioplastic Films Reinforced with Nanosilica

    https://doi.org/10.1142/S0219581X18500370Cited by:10 (Source: Crossref)

    This study is a pilot investigation on the effect of using nanosilica for reinforcing thermoplastic starch-based bioplastic films. An arbitrary 0.2wt.% of nanosilica particles were used to reinforce starch derived bioplastic materials and were further investigated for potential benefits. Nanosilica was extracted from rice husk and was characterized using methods like Fourier transform infrared spectroscopy (FTIR) technique and Brunauer–Emmett–Teller (BET) method. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques were used to determine the structure of nanosilica crystals. Scanning electron microscopy (SEM) technique was used to study the surface topography and composition of nano ‘silica. Both raw and reinforced bioplastic films were tested for thermal stability using thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC) tests and their performance was compared. Mechanical properties were compared using tensile and tear tests and biodegradability was assessed through enzymatic degradation analysis. It was found that the presence of nanosilica improved the bonding of polymer matrix and in turn increased the thermal stability and tear strength. Nanosilica reinforced matrix resulted in the increase of surface area than raw bioplastic matrix, which lead to high rate of enzymatic reactivity and degradation rate.