World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Thermal Transport Behavior of Carbon Nanotube–Graphene Junction under Deformation

    https://doi.org/10.1142/S0219581X19500133Cited by:3 (Source: Crossref)

    We employ molecular dynamics simulations to explore the effect of tensile strain on the thermal conductivity of carbon nanotube (CNT)–graphene junction structures. Two types of CNT–graphene junctions are simulated; a seamless junction between CNT and graphene with pure sp2 covalent bonds, and a junction with mixed sp2sp3 covalent bonds are studied. The most interesting observation is that the thermal conductivity of a CNT–graphene junction structure increases with an increase in mechanical strain. For the case of a (6,6) CNT–graphene junction structure with an inter-pillar distance (the length of graphene floor between two CNT–graphene junctions) of 15nm, the thermal conductivity is improved by 22.4% with 0.1 tensile strain. The thermal conductivity improvement by mechanical strain is enhanced when a larger graphene floor is placed between junctions since a larger graphene floor allows larger deformation (larger tensile strain) without breaking bonds in the junction structure. However, the thermal conductivity is found to more strongly depend on the C–C bond hybridization at the intramolecular junctions with pure sp2 hybridization showing a higher thermal conductivity when compared to mixed sp2sp3 bonding regardless of the amount of tensile strain. The obtained results will contribute to the development of flexible electronics by providing a theoretical background on the thermal transport of three-dimensional carbon nanostructures under deformation.