Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Temperature Sensitivity of Magnetic Nanoparticle Hyperthermia Using IR Thermography

    https://doi.org/10.1142/S0219581X21500022Cited by:3 (Source: Crossref)

    Magnetite nanoparticles are extensively studied for their applications in magnetic nanoparticle hyperthermia. However, existing methods involve invasive methods for monitoring the thermal profile while the heat generated by the magnetite nanoparticles is utilized for cancer therapy. Tumor diagnosis utilizing thermography for monitoring the thermal profile is in the early stage of development since the temperature sensitivity is influenced by various experimental factors. Magnetite nanoparticles embedded in agar matrix which mimics the human tissues and their heating characteristics were investigated using infrared thermography. The magnetite nanoparticles with an average particle size of 10nm were subjected to heating in an applied frequency of 500kHz. The influence of concentration, area and depth on the heating characteristics of the tumor phantoms were deduced from the thermography images. The parameters that influence the therapeutical sensitivity while using infrared thermography for magnetic nanoparticle hyperthermia, have been studied for potential applications in theranostics.