World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Synthesis and Characterization of Nanocrystalline Ba-doped Mn3O4 Hausmannite Thin Films for Optoelectronic Applications

    https://doi.org/10.1142/S0219581X2150040XCited by:7 (Source: Crossref)

    In the present work, nanocrystalline hausmannite Mn3O4:Ba thin films have been deposited on glass substrates by chemical spray pyrolysis (CSP). Then, we investigated the impact of Ba doping concentrations on the structural, morphological and optical properties. The structural characteristics were investigated by X-ray diffraction technique and clearly show the films have a spinel Mn3O4 polycrystalline structure, the degree of crystallinity was improved by increasing Ba concentrations in Mn3O4 matrix with crystallite size range of 15–33nm. The lattice parameters, the unit cell volume and the (Mn-O) bond length of tetrahedral and octahedral sites, were varied by increasing Ba concentrations. SEM micrographs show that the films are homogeneous with nanoparticles dispersed on the surface with sizes range 30–132nm. The optical properties were estimated by UV-Vis-NIR spectrophotometer and exhibited that the optical transmittance and band gap were improved by increasing Ba doping concentration. Empirical equations were suggested to estimate some correlated variables with excellent agreement with the experimental data. The optimum condition was recorded in films doped with 3% of Ba where a better crystallinity, a preferable surface morphology and outstanding optical properties have been achieved.