World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Synthesis and Antibacterial Activity of Silver Nanoparticles Against Escherichia coli and Pseudomonas sp.

    https://doi.org/10.1142/S0219581X21500435Cited by:1 (Source: Crossref)

    Silver nanoparticles (AgNPs) have been synthesized by chemical reduction method using ascorbic acid as reducing agent. Silver nitrate (AgNO3) and sodium dodecyl sulfate (SDS) have been used as precursor and stabilizer, respectively. The prepared samples were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The antibacterial activity of prepared silver nanoparticles has been assessed by using the disc diffusion method against pathogenic, gram-negative bacterial strains including Escherichia coli and Pseudomonassp. To evaluate the potential antibacterial properties of AgNPs, the discs have been impregnated and dried with three different doses like 50, 100 and 150μl of 20μg/ml concentrated AgNPs solution and placed on the Petri-dishes. The antibiotic kanamycin (5μg) was used as control. In all the cases, a clear and distinct zone of inhibition is observed, which suggests that AgNPs can be used as effective growth inhibitors of various bacterial species and would be promising candidate for future development of antibacterial agents.