Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Dual Optical Sensing of Al3+ and Hg2+ Using Carbon Dots Synthesized from Biomass

    https://doi.org/10.1142/S0219581X23500539Cited by:1 (Source: Crossref)

    This study aimed to use a simple, low-cost and eco-friendly microwave-assisted method for the synthesis of carbon dots-based fluorescent sensor that can detect more one target analyte in aqueous media. Herein, we report the synthesis of carbon dots (CDs) from peels of an indigenous and abundant wild fruit called wild medlar (Vangueria infausta). Functional groups such as hydroxyl (–OH) and carbonyl (C=O) were revealed on the surface of the as-prepared carbon dots using Fourier transform infrared spectroscopy (FTIR). The as-prepared CDs exhibited an amorphous structure and a broad distribution of particle size with an average size of 10 nm. In addition, the as-prepared CDs demonstrated excellent hydrophilicity and intense blue photoluminescence under UV light at 365 nm. The water-soluble CDs were employed for the detection of Al3+ using a ‘turn on’ mechanism and Hg2+ using a ‘turn off’ mechanism. Addition of increasing concentration of Al3+ resulted in an increase in the fluorescence intensity of the as-prepared CDs while addition of increasing concentration of Hg2+ resulted in quenching of the fluorescence intensity of CDs. The lowest limit of detection (LOD) for Al3+ and Hg2+ ions in aqueous media was determined at 817 nM and 612 nM, respectively. Furthermore, the as-prepared CDs have excellent selectivity towards Al3+ and Hg2+ among other potential metal ion interferences. Practical application of the as-prepared CDs towards detection of Al3+ and Hg2+ in tap water revealed good recovery rates of 86.0% to 87.4% and 96.4% to 106.5%, respectively. Therefore, this work has demonstrated a potent strategy for potential application of this nanoprobe towards dual detection of Al3+ and Hg2+ in aqueous samples.