World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

YINYANG BIPOLAR LATTICES AND L-SETS FOR BIPOLAR KNOWLEDGE FUSION, VISUALIZATION, AND DECISION

    https://doi.org/10.1142/S0219622005001763Cited by:39 (Source: Crossref)

    YinYang bipolar sets, bipolar lattice, bipolar L-crisp sets, and Bipolar L-fuzzy sets are presented for bipolar information/knowledge fusion, visualization, and decision. First, a bipolar lattice B is defined as a 4-tuple (B, ⊕, &, ⊗) in which every pair of elements has a bipolar lub (blub ⊕), a bipolar glb (bglb &), and a cross-pole glb (cglb ⊗). A bipolar L-set (crisp or fuzzy) B = (B-, B+) in X to a bipolar lattice BL is defined as a bipolar equilibrium function or mapping B : X ⇒ BL. A strict bipolar lattice B is defined as a 7-tuple (B, ≡, ⊕, ⊗, &, -, ¬, ⇒) that delegates a class of isomorphic bounded and complemented bipolar lattices. A refined and generalized 9-set axiomatization is presented on a class of strict bipolar lattices. The notions of bipolar L-relations and equilibrium relations are introduced as bipolar L-sets. Remarkably, YinYang bipolar L-sets lead to a bipolar universal modus ponens (BUMP) which presents a unified non-linear bipolar generalization of classical modus ponens and builds a bridge from a linear, static, and closed world to a non-linear, dynamic, and open world of equilibria, quasi-equilibria, and non-equilibria for bipolar information/knowledge fusion, visualization, and decision. A number of potential applications are outlined.