World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MODEL RISK IN VaR ESTIMATION: AN EMPIRICAL STUDY

    https://doi.org/10.1142/S021962200600209XCited by:10 (Source: Crossref)

    This paper studies the model risk; the risk of selecting a model for estimating the Value-at-Risk (VaR). By considering four GARCH-type volatility processes exponentially weighted moving average (EWMA), generalized autoregressive conditional heteroskedasticity (GARCH), exponential GARCH (EGARCH), and fractionally integrated GARCH (FIGARCH), we evaluate the performance of the estimated VaRs using statistical tests including the Kupiec's likelihood ratio (LR) test, the Christoffersen's LR test, the CHI (Christoffersen, Hahn, and Inoue) specification test, and the CHI nonnested test. The empirical study based on Shanghai Stock Exchange A Share Index indicates that both EGARCH and FIGARCH models perform much better than the other two in VaR computation and that the two CHI tests are more suitable for analyzing model risk.